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A new quasicontinuum (QC) implementation using the so-called ‘‘variable-node finite ele-
ments” is reported in this work. Tetrahedral elements, which have been exclusively utilized
for the conventional QC are replaced by hexahedral elements in conjunction with the so-
called variable-node elements. This enables an effective adaptive mesh refinement in QC,
leading to fast and efficient simulations compared with the conventional QC. To confirm
the solution accuracy, comparison is made for a nanoindentation problem with a molecular
dynamics simulation as well as a molecular mechanics solution. Further examples of nan-
oindentation are shown and discussed to demonstrate the effectiveness of the present
scheme.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The limitations of spatial and temporal scales are well known characteristics of atomistic simulation. To overcome these
limitations, various multiscale simulation methods that is capable of bridging different scales have been explored; to name a
few, for example, but not limited to, the references [1–10]. Among others, the quasicontinuum (QC) method [5–10] is one of
the most successful multiscale simulation methods. It allocates the full atomic degrees of freedom for the domain called the
nonlocal region, where defects occur, such as voids, dislocations or twins etc. On the other hand, for the local region, where
deformations are relatively mild enough to be dictated by the Cauchy–Born rule, a smaller number of degrees of freedom are
allocated through coarse-graining.

Since the QC was first reported by Tadmor et al. [5], the behaviors of various defects and their interactions, such as, cracks,
dislocations, grain boundaries and so on, have been successfully studied with the aid of this method [5–10]. The QC method
may be categorized into two approaches. The first, known as local QC, is formulated in the continuum-like finite element
framework [5,6]. The local QC is not capable of dealing with the full atomistic details taking place at the atomic-level descrip-
tion such as dislocation cores, stacking faults and grain boundaries. The second is the nonlocal QC, in which the energy of the
system is calculated from the atomistic potential [6,8]. In the mixed approach wherein the local QC is combined with the
. All rights reserved.
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nonlocal QC, there may occur the so-called ghost force at the interface of the local QC and the nonlocal QC due to the incon-
sistency of energy approximation between the two methods.

The nonlocal QC is formulated in two different ways of expressing the energy of the system: the node-based formulation
and the cluster summation [8]. In the fully nonlocal QC, the zero energy modes may occur when the node-based summation
rule is employed. To eliminate the zero energy modes, Knap and Ortiz [8] introduced the so-called ‘‘cluster summation rule”
as a fully nonlocal QC. This method paves the way to a seamless coupling of the two length scales between the atomistic and
the continuum regions.

Among the key ingredients of the QC is an effective adaptive meshing scheme that controls the sizes of the individual
element subdomains in an adaptive manner, consistent with the severity of the deformation. This scheme enables one to
reach optimal meshing or coarsening so that a high resolution, very often down to the atomic-scale, may be obtained in re-
gions of a stiff gradient of deformation, while appropriate reduction of the degrees of freedom may be accomplished in re-
gions of relatively uniform deformation. The element refinement or coarsening depends on the severity of deformation,
which is scarcely known a priori in many nanomechanics problems. In QC applications for such complex problems, accord-
ingly, an adaptive meshing or refinement scheme is essential for an efficient and accurate solution. In the conventional QC
method, most of the adaptive refinement is implemented by use of linear triangular or tetrahedral finite elements. This is due
to the fact that adaptive refinement or meshing is achieved most readily through triangulation for triangular or tetrahedral
finite elements. Despite the high geometric adaptability of triangular or tetrahedral elements, these elements are far from
being satisfactory in terms of the solution accuracy and overall efficiency. It is well known in computational mechanics that
the performance of the hexahedral type element is better than that of the tetrahedral type element. Therefore, a QC imple-
mented with the hexahedral type elements may be more efficient. Elements having large aspect ratios may be found in tet-
rahedral finite element meshes of complex geometry. In this case, they are usually the source of a substantial error as the
nodal points are not appropriate for the sampling points for representing the behaviors of the material points in those ele-
ment domains. In the same context, the nodal points of a tetrahedral QC element having a large aspect ratio are not suitable
for the sampling points to represent the overall deformation behaviors of the atoms contained in the element. To construct a
desirable adaptive mesh by preventing large aspect ratios, in general a mesh generation code for the constrained Delaunay
triangulation is incorporated into the conventional QC with tetrahedral elements [11].

In terms of the availability of an efficient alternative, what are known as variable-node elements [12–18] are a powerful
tool for adaptive refinement. In this context, it is not necessary to use only triangular or tetrahedral elements for the imple-
mentation of the QC. The QC with hexahedral elements in conjunction with the variable-node elements is capable of refining
elements without any additional programs for mesh generation; no Delaunay triangulation is needed, as opposed to the QC
with tetrahedral elements. In addition, aspect ratios of elements in the course of refinement are well controlled in the QC
with hexahedral elements combined with variable-node elements.

In this study, presented is a new implementation for the fully nonlocal QC, replacing tetrahedral elements used in the
conventional QC by the hexahedral elements. For an efficient adaptive mesh refinement, the variable-node elements [12–
18] are employed to bridge concurrently between different scales of meshes. To test the performance of the present QC with
hexahedral elements in conjunction with the variable-node elements, nanoindentation [19–31] simulations are conducted
under various conditions. Comparison is made to the conventional QC in terms of the effectiveness. In addition, employing
the present QC simulation for nanoindentation, we explore the onset of dislocations, followed by the subsequent develop-
ment and the interaction of some defects.

The outline of the paper is as follows. In Section 2, the fully nonlocal QC and the variable-node elements are described and
this is followed by adaptive meshing refinement in Section 3 and numerical examples in Section 4. Finally, Section 5 closes
the paper with some concluding remarks.

2. New implementation of the QC with the hexahedral type elements

In this section, the formulation of the fully nonlocal QC is briefly described and the key notion of variable-node elements
is summarized. This is followed by our discussion on how to construct the overall scheme for an adaptive QC simulation by
use of variable-node elements.

2.1. The overview of the nonlocal QC based on cluster-based summation

Knap and Ortiz [8] proposed the fully nonlocal QC based on the cluster summation rule. This nonlocal QC requires more
computations compared to the local QC, which is based on the notion of the locally homogeneous deformations in contin-
uum. The local QC therefore assumes the validity of the Cauchy–Born rule and uses deformation gradient and strain variables
based on continuum mechanics to link deformation to constitutive equations, which may be one derived from atomic poten-
tials or one from a phenomenological continuum theory.

In the absence of external forces, the total energy Etotal of a system is given as the summation of energy Ei for every
atom:
Etotal ¼
XN

i¼1

Ei ð1Þ
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where N is the number of atoms in the system. There are two approaches of formulation for coarse-graining in the nonlocal
QC method, named the energy-based method and the force-based method [6]. In the present work, the energy-based method
is utilized and there are two methods of expressing the energy of the system in the nonlocal QC [8]. The first, known as the
node-based summation rule, is to sum over each node or over the individual representative atom the energy associated with
the individual node. The second approach is the cluster summation rule, which calculates the total energy as the summation
of the cluster energy. Here the cluster is a collection of atoms within the cluster radius from a given node.

In the node-based summation rule, the total energy Etotal can be expressed as the approximated total energy Eh
total using

the energy of the representative atom Ea as follows:
Etotal � Eh
total ¼

XNR

a¼1

waEa ð2Þ
Here, NR, a and wa represent the total number of representative atoms, a node number for a representative atom and a
weight function of representative atom a, respectively. The physical meaning of the weight function wa is the number of
ordinary atoms represented by a representative atom a [6]. In the QC method, we assume that the energy of an individual
atom Ei is expressible through interpolation in terms of the energies Ea of the representative atoms:
Ei � Eh
i ¼

XNR

a¼1

HaðXiÞEa ð3Þ
Here, Ha(Xi) denotes a shape function in finite element method, and Eh
i and Ea the approximate energy of an individual atom

and the energy of the representative atom at node a. The shape function Ha(Xi) interpolates the current position of ordinary
atoms using the mapping from a reference coordinate Xi to a current coordinate xi.
xh
i ¼

XNR

a¼1

HaðXiÞxa ð4Þ
From Eqs. (1) and (3), it follows that
Etotal ¼
XN

i¼1

XNR

a¼1

HaðXiÞEa ð5Þ
Then, Eqs. (2) and (5) yield the weight function wa in terms of the shape function Ha(Xi):
wa ¼
XN

i¼1

HaðXiÞ ð6Þ
The above node-base summation rule may lead to zero energy modes [8], which may be avoided by choosing a sufficient
number of representative atoms. Knap and Ortiz [8] proposed the cluster-based summation rule to resolve this problem in an
effective manner. In this rule, the total energy of the system is not represented by the energy of the representative atoms but
by the summation of the cluster energy Ec

b:
Eh
total ¼

XNR

b¼1

wc
bEc

b ¼
XNR

b¼1

wc
b

X
i2clusterb

Ei

" #
¼
XNR

b¼1

wc
b

X
i2clusterb

XNR

a¼1

HaðXiÞEa

" #
ð7Þ
Here, the cluster weight wc
b is obtained from Eqs. (5) and (7) as
wa ¼
XNR

b¼1

wc
b

X
i2clusterb

HaðXiÞ
" #

ð8Þ
The solution to this system of NR equations yields the cluster weight function wc
b. In the solution procedure, an efficient

approximation may be made by replacing the coefficient matrix with a diagonal matrix by way of a ‘‘lumping process” based
on the row-sum technique. This replaces the diagonal entries by summation of all entries on the corresponding rows, leaving
all off-diagonal entries zero (see p. 444 of [32]). The decoupling due to this diagonalization renders the solution process for
this system of linear equations trivial. Note that this technique is widely used for lumping mass matrices in dynamic finite
element equations.

2.2. Variable-node elements for QC method

In the conventional QC method, triangular and tetrahedral elements are employed for the coarse-graining of a two- and a
three-dimensional domain, respectively. However, it is well known that quadrilateral or hexahedral elements show much
better performance than triangular or tetrahedral elements in finite element methods. Nevertheless, the conventional QC
method has adopted triangular or tetrahedral elements for convenience of adaptive refinement. That is, despite the better
performance of quadrilateral and hexahedral elements, they are not commonly used in finite element simulations involving
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adaptive refinement as in the QC method, whereas triangular and tetrahedral elements are frequently employed in this case.
This is due to the fact that realizing the adaptive refinement for a mesh comprised of quadrilateral or hexahedral elements is
not straightforward.

Recently, Lim et al. [14–17] showed that ‘‘nonmatching meshes”, are efficiently treated utilizing variable-node elements.
Particularly, the adaptive refinement in the presence of quadrilateral or hexahedral elements was easily handled by variable-
node elements. They have been successfully employed with regards to nonmatching problems and for bridging between two
shape functions of different orders for smooth transition. This suggests that the use of variable-node elements may make it
possible to utilize quadrilateral and hexahedral elements for more efficient QC implementation with adaptive refinement.
The variable-node elements appear to violate the interelement compatibility according to the notion of the conventional fi-
nite elements. However, the nodal points are shared by the two neighboring elements and their shape functions are con-
structed such that the interelement compatibility is satisfied [15,18].

In this work, we employ hexahedral elements combined with three-dimensional variable-node elements in the QC for
rectilinear crystalline materials. This enables one to implement the adaptive refinement for hexahedral elements in a
straightforward manner, as the interelement compatibility is taken care of by the variable-node elements. Furthermore,
an additional mesh generation program, which may be necessary for efficient refinement of triangular and tetrahedral ele-
ments, is not required for quadrilateral and hexahedral elements. The use of variable-node elements makes it possible to
continue the adaptive refinement simply by adding elements and nodes where refinement is needed.
Fig. 1. Variable-node element with extra nodes on one face.
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The three-dimensional variable-node elements introduced in this section are based on the hexahedral element with 8
nodes. The variable-node elements may have extra nodes up to 5 nodes on each face, which is allowed to be connected
to one to four adjoined elements; for example, 1 to 5 nodes may be added only on one face so that 9 to 13-noded elements
may be obtained (see Fig. 1). This addition of extra nodes may apply to some or all of the six faces; for example a 17-noded
element may be obtained if two neighboring faces sharing one edge are provided with the full 9 extra nodes including one on
the shared edge, or 16-noded elements are obtained if a set of any two opposite faces is chosen for the addition of the extra
nodes only on the edges of the two faces with no nodes on the centers of the two faces. In case all faces are allowed to have
the full extra nodes, obtained is the variable-node element with 26 nodes (see Fig. 2). Note that we do not have a node on the
center of the variable-node element in Fig. 2, as the addition of the center node leads to the refinement into 8 hexahedral
elements. According to the aforementioned description, the 8-noded hexahedral element may be thought of as a special case
without any extra nodes in the context of the variable-node elements and so we write the present QC scheme as ‘‘the QC
with variable-node elements”.

Finite element shape functions are simply constructed by a hierarchical scheme in general. However, it is not straightfor-
ward to generate the shape functions of a three-dimensional variable-node element that have extra nodes on the edges or on
the element faces. One may refer to the references [15] and [18] for detail on the construction of this element, which is
briefly summarized here. For the construction of the shape functions of the variable-node elements, first we start with
the shape functions for the regular 8-noded element H0

1 � H0
8.
H0
i ¼

1
8
ð1þ nniÞð1þ ggiÞð1þ ffiÞ for i ¼ 1;2; . . . ;8
In addition to these shape functions, we define the following shape functions for each of the extra nodes:
H0
i ¼

1
4
ð1� jnjÞð1þ ggiÞð1þ ffiÞ for i ¼ 9;11;13;15 ðodd numberÞ

H0
i ¼

1
4
ð1þ nniÞð1� jgjÞð1þ ffiÞ for i ¼ 10;12;14;16 ðeven numberÞ

H0
i ¼

1
4
ð1þ nniÞð1þ ggiÞð1� jfjÞ for i ¼ 17;18;19;20

H0
i ¼

1
2
ð1� jnjÞð1þ ggiÞð1� jfjÞ for i ¼ 21;23

H0
i ¼

1
2
ð1þ nniÞð1� jgjÞð1� jfjÞ for i ¼ 22;24

H0
i ¼

1
2
ð1� jnjiÞð1� jgjÞð1þ ffiÞ for i ¼ 25;26

ð9Þ
Here, n, g and f indicate the coordinates of the master domain of the variable-node element in Fig. 2. Note that H0
i ði ¼ 9—20Þ

indicates the shape function of node ‘‘i” when only node ‘‘i” is added at the center of an element edge. Furthermore,
H0

i ði ¼ 21—26Þ denotes the shape function of node ‘‘i” when only ‘‘i” is added at the center of one of the four element faces.
The hierarchical subtraction is needed to construct the shape functions of a variable-node element to meet the Kronecker-

delta condition in case more than one extra node is added. Consider the shape functions H1—H8; say Hi is now constructed by
subtracting from H0

i the extra shape functions multiplied by the H0
i values at the node i. For example, consider the shape
Fig. 2. The 26-noded hexahedral variable-node element with full extra nodes.
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function H2 of node 2 in case the extra nodes 9, 10 and 18 are added on the centers of the three edges (see Fig. 2). The shape
function H2 is expected to be zero at each of the extra nodes added, and this is made possible by adjusting H0

2, which is not
zero due to the additional nodes 9, 10 and 18. In addition to these 3 nodes and if nodes 21, 22 and 25 are added on the cen-
ters of the three faces, a similar hierarchical subtraction needs to be made. That is, for each of the extra nodes the original
shape function H0

2 is modified by hierarchically subtracting the extra shape functions multiplied by the values of H0
2 at the

nodes associated with the extra nodes. If all the extra nodes are inserted, the shape functions H1 through H8 are modified as
follows:
Fig. 3.
full mo
H1 ¼ H0
1 �

1
2
ðH9 þ H12 þ H17Þ �

1
4
ðH21 þ H24 þ H25Þ

H2 ¼ H0
2 �

1
2
ðH9 þ H10 þ H18Þ �

1
4
ðH21 þ H22 þ H25Þ

H3 ¼ H0
3 �

1
2
ðH10 þ H11 þ H19Þ �

1
4
ðH22 þ H23 þ H25Þ

H4 ¼ H0
4 �

1
2
ðH11 þ H12 þ H20Þ �

1
4
ðH23 þ H24 þ H25Þ

H5 ¼ H0
5 �

1
2
ðH13 þ H16 þ H17Þ �

1
4
ðH21 þ H24 þ H26Þ

H6 ¼ H0
6 �

1
2
ðH13 þ H14 þ H18Þ �

1
4
ðH21 þ H22 þ H26Þ

H7 ¼ H0
7 �

1
2
ðH14 þ H15 þ H19Þ �

1
4
ðH22 þ H23 þ H26Þ

H8 ¼ H0
8 �

1
2
ðH15 þ H16 þ H20Þ �

1
4
ðH23 þ H24 þ H26Þ

ð10Þ
Here, the shape functions Hi(i = 21–26) are given as
Hi ¼ H0
i for i ¼ 21;22; . . . ;26 ð11Þ
The remaining shape functions H9–H20 are given by the followings:
Hi ¼ H0
i �

1
2
ðHa þ HbÞ for i ¼ 9;10; . . . ;20

for i ¼ 9;10;11;12 : a ¼ iþ 12; b ¼ 25
for i ¼ 13;14;15;16 : a ¼ iþ 8; b ¼ 26
for i ¼ 17 : a ¼ 21; b ¼ 24
for i ¼ 18;19;20 : a ¼ iþ 3; b ¼ iþ 4

ð12Þ
where a and b are the node numbers for the nodes located at the center of two faces sharing the edge with mid-node i.
Patch test model with variable-node elements for the linear displacement field: u ¼ 1
100 ð3xþ 2yþ zÞ;v ¼ 1

100 ðxþ 2y� zÞ;w ¼ 1
100 ð�2xþ yþ 4zÞ, (left:

del, right: inner elements).



Table 1
The result of patch test; coordinates and displacements of the inner nodes.

Node Coordinates of inner nodes Exact displacements Calculated displacements

x y z u v w u v w

9 6.0000 3.0000 3.0000 0.2700 0.0900 0.0300 0.2700 0.0900 0.0300
10 7.0000 7.0000 4.0000 0.3900 0.1700 0.0900 0.3900 0.1700 0.0900
11 3.0000 7.0000 4.0000 0.2700 0.1300 0.1700 0.2700 0.1300 0.1700
12 3.0000 4.0000 3.0000 0.2000 0.0800 0.1000 0.2000 0.0800 0.1000
13 7.0000 3.0000 6.0000 0.3300 0.0700 0.1300 0.3300 0.0700 0.1300
14 6.0000 6.0000 6.0000 0.3600 0.1200 0.1800 0.3600 0.1200 0.1800
15 4.0000 7.0000 7.0000 0.3300 0.1100 0.2700 0.3300 0.1100 0.2700
16 3.0000 4.0000 7.0000 0.2400 0.0400 0.2600 0.2400 0.0400 0.2600
17 3.5000 5.5000 7.0000 0.2850 0.0750 0.2650 0.2850 0.0750 0.2650
18 6.5000 4.5000 6.0000 0.3450 0.0950 0.1550 0.3450 0.0950 0.1550
19 6.5000 5.0000 3.5000 0.3300 0.1300 0.0600 0.3300 0.1300 0.0600
20 3.0000 5.5000 3.5000 0.2350 0.1050 0.1350 0.2350 0.1050 0.1350
21 5.0000 5.0000 6.5000 0.3150 0.0850 0.2100 0.3150 0.0850 0.2100
22 5.0000 6.5000 6.5000 0.3450 0.1150 0.2250 0.3450 0.1150 0.2250
23 4.7500 5.2500 3.5000 0.2825 0.1175 0.0975 0.2825 0.1175 0.0975
24 5.0000 7.0000 4.0000 0.3300 0.1500 0.1300 0.3300 0.1500 0.1300
25 6.5000 4.7500 4.7500 0.3375 0.1125 0.1075 0.3375 0.1125 0.1075
26 6.5000 6.5000 5.0000 0.3750 0.1450 0.1350 0.3750 0.1450 0.1350
27 3.2500 5.5000 5.2500 0.2600 0.0900 0.2000 0.2600 0.0900 0.2000
28 3.5000 7.0000 5.5000 0.3000 0.1200 0.2200 0.3000 0.1200 0.2200
29 4.8750 5.1250 5.0000 0.2988 0.1013 0.1538 0.2988 0.1013 0.1538
30 4.5000 3.5000 3.0000 0.2350 0.0850 0.0650 0.2350 0.0850 0.0650
31 5.0000 3.5000 6.5000 0.2850 0.0550 0.1950 0.2850 0.0550 0.1950
32 5.0000 6.7500 5.2500 0.3375 0.1325 0.1775 0.3375 0.1325 0.1775

S. Kwon et al. / Journal of Computational Physics 228 (2009) 4789–4810 4795
To confirm that each of the above variable-node elements satisfies a patch test, a finite element patch as shown in Fig. 3 is
tested. As tabulated in Table 1, the exact solution is recovered within the accuracy of the numerical computation. All the
elements within this category of the variable-node elements are tested and found to pass the patch test.

3. Adaptive mesh refinement using variable-node elements

Among the key ingredients of the QC is an effective adaptive meshing or refinement scheme that controls the sizes of the
individual element subdomains in an adaptive manner, consistent with the severity of deformation. That is, the best use of
the present QC method is made when it is combined with automatic adaptive mesh refinement. The adaptive scheme en-
ables one to reach optimal meshing or coarsening so that a high resolution, very often down to the atomic-scale, may be
obtained in regions of a stiff gradient of deformation, while appropriate reduction of the degrees of freedom may be accom-
plished in regions of relatively uniform deformation. Without this process, the mesh must be constructed based only on a
priori approximate judgment regarding the deformation behavior, which is scarcely known a priori in many nanomechanics
problems. In QC applications for such complex problems, accordingly, an adaptive meshing or refinement scheme is essential
for an efficient and accurate solution.

In practice, most of the QC implementations in the literature are limited to linear triangular or tetrahedral elements, as
adaptive refinement or meshing is achieved most readily through triangulation for this type of elements, more specifically
through the constrained Delaunay triangulation [11]. Note that the variable-node elements discussed in the previous section
is capable of bridging the gap between two different scales of meshes smoothly, as reported in finite element methods
[15,17,18]. Therefore, the adaptive refinement with the aid of the variable-node elements may be an efficient alternative
to the adaptive meshing through the constrained Delaunay triangulation [11] in the conventional QC.

Despite the high geometric adaptability of triangular or tetrahedral elements, these elements are far from being satisfac-
tory in terms of the accuracy and the overall effectiveness. Firstly, tetrahedral elements show poor performance in terms of
accuracy, compared with hexahedral elements. Next, the aspect ratios tend to increase for tetrahedral elements as the refine-
ment continues. Elements having large aspect ratios may be found in tetrahedral finite element meshes of complex geom-
etry. In this case, they are usually the source of a substantial error as the nodal points are not appropriate for the sampling
points for representing the behaviors of the material points in those element domains. In the same context, the nodal points
of a tetrahedral QC element having a large aspect ratio are not suitable for the sampling points to represent the overall defor-
mation behaviors of the atoms contained in the element. To prevent large aspect ratios, in general an adaptive mesh gener-
ation code for the constrained Delaunay triangulation is incorporated into the conventional QC with tetrahedral elements.
However, the refinement of a mesh of hexahedral elements with the aid of the variable-node elements makes it possible
to do without any additional programs for adaptive mesh refinement; no Delaunay triangulation is needed, as opposed to
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the QC with tetrahedral elements. In the meantime, it is noteworthy that the aspect ratios of hexahedral elements do not
increase in the course of refinement, as will be shown in numerical examples.

In the adaptive refinement method, the mesh keeps track of the deformation magnitude and is increasingly refined
according to the severity of the deformation. To estimate the deformations, the deformation measure e is chosen, as follows
[8,30]:
(

(

(
(
(
(

e ¼
ffiffiffiffiffiffiffiffiffiffi
IIðEÞ

p
h=a ð13Þ
Here, II, E, h and a denote the second invariant of the strain, the Green strain, the element size and the bond length or the
lattice spacing of a domain material, respectively. The strain E is simply obtainable according to its definition when the
deformation gradient F is determined. If an element has a value of e greater than a given tolerance, the element is refined
with nodes being added. Before closing this section, the entire numerical procedure for computation is summarized in
the box below.
1) Read initial data: atom positions Xi in the reference coordinate, boundary conditions and element data (nodal points
and element connectivity).

2) Make elements data
(a) Find the element in which an ordinary atom is contained.
(b) Obtain the shape functions Ha.

3) Make the clusters and the neighbor lists and calculate cluster weights wc in Eq. (8).
4) Minimize the energy Eh

total from the cluster summation w.r.t. all nodal points xa.
5) Calculate the deformation gradient F and the deformation measure e.
6) For every element with e> tolerance, add nodal points on the edge of the element, renew element numbering, con-

nectivity and boundary conditions and go to step 2.
Else update the positions of atoms and write the data.
4. Numerical examples

In this section, some numerical examples on the nanoindentation simulation are presented to demonstrate the perfor-
mance of the present QC implementation with variable-node elements. The comparison is made between the two solutions
from the conventional QC with tetrahedral elements and from the present QC with variable-node elements. The simulation is
carried out for an FCC crystalline structure. The embedded-atom method (EAM) potential, which is widely used for FCC crys-
tals such as Cu, Au, Pt and Al, is chosen. The EAM potential is expressed by the pair potential energy, which is the interaction
between atoms and the embedded energy, which is the interaction between an atom and the electronic gas or electronic sea
that covers the atom [33,34]. To minimize the system energy, limited-memory BFGS (LBFGS) is chosen [35,36]. LBFGS is pop-
ularly adopted when Hessian matrix calculation is not possible and this method employs limited-memory quasi-Newton
approximation for the improvement of convergence speed and computing resources.

4.1. Comparison between the present QC with variable-node elements and the conventional QC with tetrahedral elements

In this section, the solution from the new QC with variable-node elements is compared with the solution from the con-
ventional QC with tetrahedral elements to demonstrate the effectiveness of the former. A nanoindentation of a Al (111)
structure is a test problem for this comparison. The EAM potential parameters for Al are listed in Appendix A. The total num-
ber of the atoms is 26,297 and the size of the model along the x, y and z directions is 91.6 Å, 79.4 Å and 56.1 Å, respectively.
The initial number of representative atoms is 385, which is only 1.5% of the total number of atoms. Fixed boundary condition
is applied to the atoms at the bottom along x, y and z directions and the atoms on each of the four lateral faces are fixed in the
x and y directions. The initial mesh of tetrahedral elements for the conventional QC is shown in Fig. 4(a), while the initial
mesh of variable-node elements for the present QC is shown in Fig. 5(a).

The indenter tip is represented by a repulsive potential, described as follows:
Eext ¼ AðR� riÞ3 ð14Þ
Here, the indenter-radius R is set to 10 Å and ri the distance between the center of the indenter and an atom i. ‘‘A” is a con-
stant related to the effective stiffness of the indenter, set to 10 eV/Å3 in the present simulation.

Fig. 4(a)–(e) show the mesh evolution of the QC with tetrahedral elements according to the adaptive mesh refinement,
while Fig. 5(a)–(e) show the mesh evolution of the QC with variable-node elements. In the conventional QC with tetrahedral
elements, the constrained Delaunay triangulation code is used with the aid of TetGen [37] for adaptive mesh refinement.
Here, the dots indicate the representative atoms. The adaptive meshing criterion e is chosen to be 0.025 for the QC using



Fig. 4. The mesh evolution in nanoindentation simulation for the QC with tetrahedral elements (the adaptive meshing criterion e is set to 0.025).

Fig. 5. The mesh evolution in nanoindentation simulation for the QC with variable-node elements (the adaptive meshing criterion e is set to 0.013).
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the tetrahedral mesh and 0.013 for the QC using the variable-node elements. As seen in Table 3, the two cases maintain al-
most the same degree of accuracy in terms of the normalized root mean square error. As the nanoindentation progresses,
high density of representative atoms stands out around the indenting tip on the top surface in both simulations. Note that
the aspect ratios of the hexahedral elements in Fig. 5 remain almost uniform throughout the refinement process as the geo-
metric change due to refinement in the mesh is accommodated by various variable-node elements. In contrast, it is hard to



Fig. 6. Load–displacement curves for the nanoindentation simulation; (a) the results from the QC with tetrahedral elements compared with the result from
the MM simulation and (b) the results from the QC with variable-node elements compared with the result from the MM simulation.
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avoid high aspect ratios for the tetrahedral meshes as shown in Fig. 4 while the refinement is in progress, although the con-
strained Delaunay triangulation code is utilized.

Three simulations for the conventional QC method are performed to observe the solution behavior while varying the
adaptive meshing criterion as 0.0100, 0.0250 and 0.0500. For comparison, five simulations for the present QC method are
carried out to observe the solution behavior while varying the adaptive meshing criterion as 0.0050, 0.0075, 0.010, 0.013
and 0.025. A molecular mechanics (MM) simulation is performed to find a reference solution for comparison. The load–dis-
placement curves from the conventional QC with tetrahedral elements and from the QC employing variable-node elements
are shown in Fig. 6(a) and (b), respectively. For decreasing values of e, the solutions from the conventional and from the pres-
ent QC approach the MM solution. As aforementioned, the meshing criterion e = 0.0250 for the tetrahedral mesh yields
approximately the same accuracy as e = 0.013 for the variable-node mesh, as shown in Fig. 6(a) and (b) and in Table 3. Com-
paring these two cases in Table 2, we see that the present QC with variable-node elements needs 3733 representative nodes
at the last stage of solution, while the QC with tetrahedral elements uses 3710 representative nodes (see the last column in
Table 2). To attain the same degree of accuracy, the two QC methods require almost the same number of the degrees of free-
doms in the present nanoindentation problem. In Table 3, the normalized root mean square (NRMS) error norm of tip force
between the MM and the QC, the number of iterations for the adaptive mesh refinement and the total time for computation
are compared between the two QC methods for e = 0.025 (tetrahedral mesh) and e = 0.013 (variable-node element mesh),
which yield almost the same accuracy. Note that the QC using variable-node elements requires less iterations for adaptive
mesh refinement so that the total time for computation is dramatically shorter than QC with tetrahedral elements. For exam-
ple, QC using variable-node element with e = 0.013 eight times faster than the QC with tetrahedral elements with e = 0.0250
(53 min versus 434 min). The machine used for computing is Intel Core i7 3.2 GHz. The reduction of the computing time is
Table 2
Comparison of the evolving number of representative atoms employed in simulation in the course of the adaptive refinement for various values of e (QC_Tet:
QC with tetrahedral elements; QC_VNE: QC with variable-node elements).

Tip displacement (Å) 0.0 0.5 1.0 1.5 2.0 2.5 3.0

MM 26,297 26,297 26,297 26,297 26,297 26,297 26,297
QC_Tet_Cr = 0.0100 385 (1.5%) 3591 (13.7%) 4373 (16.6%) 5772 (21.9%) 7249 (27.6%) 9399 (35.7%) 10139 (38.6%)
QC_Tet_Cr = 0.0250 385 (1.5%) 390 (1.5%) 1119 (4.3%) 1715 (6.5%) 2181 (8.3%) 2997 (11.4%) 3710 (14.1%)
QC_Tet_Cr = 0.0500 385 (1.5%) 385 (1.5%) 397 (1.5%) 477 (1.8%) 633 (2.4%) 903 (3.4%) 1154 (4.4%)
QC_VNE_Cr = 0.0050 385 (1.5%) 481 (1.8%) 1951 (7.4%) 4700 (17.9%) 9506 (36.1.5%) 11933 (45.4%) 13018 (49.5%)
QC_VNE_Cr = 0.0075 385 (1.5%) 385 (1.5%) 1342 (5.1%) 2670 (10.2%) 4485 (17.1%) 6274 (23.9%) 7182 (27.3%)
QC_VNE_Cr = 0.0100 385 (1.5%) 385 (1.5%) 1043 (4.0%) 1931 (7.3%) 2982 (11.3%) 4601 (17.5%) 5247 (20.0%)
QC_VNE_Cr = 0.0130 385 (1.5%) 385 (1.5%) 947 (3.6%) 1544 (5.9%) 2272 (8.6%) 3262 (12.4%) 3733 (14.2%)
QC_VNE_Cr = 0.0250 385 (1.5%) 385 (1.5%) 385 (1.5%) 947 (3.6%) 1179 (4.5%) 1731 (6.6%) 1974 (7.5%)
QC_VNE_Cr = 0.0500 385 (1.5%) 385 (1.5%) 385 (1.5%) 385 (1.5%) 825 (3.1%) 947 (3.6%) 1057 (4.0%)



Table 3
Comparison of the normalized root mean square(NRMS) error norm, the number of remesh iteration, and computing time employed in simulation in the course
of the adaptive refinement for various values of e (QC_Tet: QC with tetrahedral elements; QC_VNE: QC with variable-node elements).

NRMS error norm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1ðfMM � fQCÞ2

q
= f max

QC � f min
QC

� �
, where f denotes the tip force, and n the total number of sampling points in each load–displacement

curve.

Simulation type NRMS error norm Remesh interation Computing time (min)

QC_Tet_Cr = 0.0100 0.0034099 756 459
QC_Tet_Cr = 0.0250 0.0322838 740 434
QC_Tet_Cr = 0.0500 0.0391450 428 275
QC_VNE_Cr = 0.0050 0.0037373 320 61
QC_VNE_Cr = 0.0075 0.0088000 282 56
QC_VNE_Cr = 0.0100 0.0134979 262 54
QC_VNE_Cr = 0.0130 0.0325231 218 53
QC_VNE_Cr = 0.0250 0.0442901 182 45
QC_VNE_Cr = 0.0500 0.0603110 152 49
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due to the fact that the QC with variable-node elements is much more efficient than the QC with tetrahedral elements, in
reaching to final mesh configuration conforming to the prescribed value of e. In the finite element method, it is well known
that the hexahedral or quadrilateral elements show much faster convergence behavior than the tetrahedral or triangular ele-
ments. In addition, the constrained Delaunay triangulation that is used for the QC with tetrahedral elements is not needed for
the QC with variable-node elements.

4.2. The performance and efficiency of adaptive mesh refinement

For further detailed investigation of the efficiency and performance of adaptive mesh refinement, a nanoindentation sim-
ulation of the Al (111) direction is carried out using the present QC with variable-node elements and compared with a MM
simulation. The total number of atoms is 114,905 and the size of the model along x, y and z directions is 137.5 Å, 119.1 Å and
112.2 Å, respectively. The initial number of the representative atoms is 11,907. The indenter radius is 20 Å and the stiffness
parameter A is set to 10 eV/Å3. The atoms on the bottom are all fixed in the x, y and z directions and the atoms on the four
lateral faces fixed in the x and y directions. To evaluate the efficiency of the present adaptive mesh refinement scheme, six
different simulations are carried out. First, a MM simulation, accounting for every atom, is obtained as a reference solution.
Second, QC simulation without adaptive mesh refinement is carried out. The other four simulations are performed to observe
the solution behaviors according to the adaptive meshing criterion parameters e, each of which have four different values:
0.0025, 0.0050, 0.0075 and 0.0100 for e.

The QC solution without adaptive meshing refinement largely deviates from the MM solution, particularly after the first
load drop (see Fig. 7). On the other hand, the QC solutions with adaptive mesh refinement approach the MM solution as the
mesh refinement criterion e is decreased. From Fig. 7, it is seen that the choice of e = 0.005 yields a solution sufficiently
close to the MM solution. As a smaller adaptive meshing criterion is selected, more degrees of freedom are included in
Fig. 7. Load–displacement curves for the nanoindentation simulation; the results from the QC with variable-node elements for various values of e.
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the calculation (see Fig. 8). Through the results in Figs. 7 and 8, the value of e for adaptive meshing criterion that maintain the
accuracy and efficiency of the solution may be determined for the indentation problem.

4.3. Observation of the defects in the simulation of nanoindentation on Al (111)

To test the present QC method for a large-scale problem, we consider a new nanoindentation simulation on an Al spec-
imen subjected to a tip force on the top surface. The model of the nanoindentation is composed of 2,509,056 Al atoms piled
up along the [111] direction, which is along the z-coordinate. The size of the model in the x, y and z directions is 41.2 nm,
35.7 nm and 28.3 nm, respectively, with the periodic boundary conditions imposed on the four lateral faces (see Fig. 9(a)).

This time the solution from the present QC is compared to the solution from molecular dynamics (MD) simulation, which
is widely employed to explore nanoscale material behaviors in material science. The radius of the indenter tip is 5.0 nm and
the stiffness parameter A is set to 10 eV/Å3. The indenting speed is chosen to be 10 m/s. A MD simulation, which considers
thermal effect, is essentially different from a QC or a MM simulation based on a molecular static approach. Therefore, the
thermal effect is minimized by controlling the temperature at 1 K with a Nose–Hoover thermostat for a proper comparison.
The velocity Verlet method is utilized for time integration. The time step is 5fs and the number of simulation steps is 20,000.
In addition to the periodic boundary conditions prescribed on the four lateral faces of the body, the free boundary conditions
are imposed on the top and the bottom faces. The periodic boundary conditions are employed to reduce the effect of the
wave reflection which may influence the defects occurred by nanoindentation and deteriorate the simulation results. Note
that we intentionally impose the free boundary condition on the bottom face to prevent the any defects moving downward
from bouncing back on the bottom. In addition, uniform counter body force is applied to balance the applied tip force, so that
the downward translation of the body due to the applied tip force may be prevented. This technique was used by Li et al. [31]
and Lee et al. [23].

The initial model of the QC with variable-node elements is shown in Fig. 9(b). Atoms on the bottom surface are fixed in
the x, y and z directions and the atoms on the four lateral faces are fixed in the x and y directions, in contrast with the periodic
boundary conditions for the MD simulation. The initial number of the representative nodes in the QC model starts with
142,811 representative atoms. In the final stage of simulation, this QC model ends up with 147,252 representative atoms,
when e is chosen to be 0.075.

The load–displacement curves from the MD simulation and from the QC with variable-node elements are shown in
Fig. 10. The body undergoes elastic deformation without any defect until the first drop in the load–displacement curve oc-
curs. The initial defect arises upon the first force drop at approximately 5.5 Å and 5.7 Å on the load–displacement curve in QC
solution and MD solution, respectively. For the MD simulation, we have applied the periodic BC on the film plane and the free
boundary on the bottom with body force to counter the applied loading on the top. This is different from the boundary con-
ditions in the QC case, in which no wave effects appear. In the MD model all reflected stress waves from the free surface on
the bottom have the opposite sign of the incoming waves, so that the wave effects are minimal. Therefore, the same response
is expected between the MD and the QC within elastic response despite the difference in boundary conditions. However, the
two solutions come out different once plasticity is developed or defects are generated as the displacement depends on
the defect behaviors including dislocation glides and the defects are developed in different ways between the MD model
and the QC model due to different loading rates and boundary conditions.
Fig. 8. Increasing numbers of the representative atoms versus the tip displacement for various values of e.



Fig. 9. An initial model for the nanoindentation simulation of an Al(111) structure; (a) A model for MD simulation with the number of the atoms being
2,509,056 and (b) A model for QC using variable-node elements with the number of the representative atoms being 142,811.
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Fig. 11(a) and (b) shows the initial defect formation from the MD and the QC simulation. Both of them show the well
known embryonic dislocation that is developed from the site of homogeneous nucleation (see ref.[23]). Note that all interior
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atoms away from defects have been removed in Fig. 11(a) and (b), utilizing the centrosymmetry parameter [38]. An embry-
onic dislocation takes place in the two planes of ð�111Þ and ð1 �11Þ among the {111} slip planes (see Fig. 11(c)). This phenom-
enon has been observed and presented by a number of researchers [23,31]. In the subsequent stage, the embryonic defect is
developed into the well known tetrahedral lock (see [23]). Note that the embryonic dislocation is also observed in the QC
simulation along the same slip planes. Note that the load–displacement curves from the MD simulation and the QC simu-
lation are close to each other up to the point of the first load drop and that both simulations predict the formation of the
same initial defects.

4.4. Nanoindentation simulations on the (111) surface of an Al nanostructure containing a void

In this section, the variations in the mechanical behaviors induced by the defect of a void are explored. For this we again
consider a nanoindentation on Al (111) nanostructure. The size of the simulation models along the x, y and z directions is
137.5 Å, 119.1 Å and 112.2 Å, respectively. This model consists of 114,905 Al atoms piled up in the [111] direction, which is
along the z-coordinate. The number of representative atoms is 13,586. The radius of the indenter tip is 20 Å and the stiffness
parameter A is set to 10 eV/Å3. Atoms on the bottom are fixed along the x, y and z directions, and the atoms on the four sides
are fixed in the x and y directions.

First, six nanoindentation simulations are carried out. The first model does not have a void inside the body, while the
other five models have a void with a radius of 15 Å. The void in the body is located at the center of the x–y plane and the
position of the void center along the z direction is varied: 0.5 � height of the specimen, 0.6 � height, 0.7 � height,
0.8 � height and 0.9 � height. The load–displacement curves for these simulations are shown in Fig. 12. Throughout the sim-
ulations, as the void approaches the top free surface, the slope of the curve tends to decrease as the resistance to the down-
ward displacement of the tip is reduced with the increasing heights of the void. When the height of the void is 0.8 � height,
the slope of the curve and the tip force are reduced drastically. For the 0.9 � height case, the void is not completely embed-
ded inside the body, but its upper part is exposed out on the top surface of the body, forming a hole on the top surface. The
indenter tip starts to interact with the body at the tip displacement of 4 Å. However, while the distance of the void from the
bottom increases up to the 0.7 � height, the maximum tip force continues to increase gradually in proportion to this dis-
tance, with the increasing delay in the first load drop. To confirm these characteristics, the defect configurations inside
the body are visualized using the centrosymmetry parameter and a comparison is made for various void heights:
0.5 � height, 0.7 � height, and 0.8 � height and for the case without a void (see Figs. 13–16). In Figs. 13–16, we employed
the visualization technique of centrosymmetry parameter that has successfully proven effective for the studies of dislocation
nucleation in fcc crystals [23,38]. Every atom in perfect fcc single crystal has twelve nearest-neighboring atoms. For one
atom, each of its neighbors can be paired with an opposite nearest neighbor. The centrosymmetry parameter P for this atom
is then defined as
Fig. 10.
MD, res
P ¼
X6

i¼1

jRi � Riþ6j2 ð15Þ
Comparison in the load–displacement curves between the QC and the MD simulation; the blue line and the red line indicate the results of QC and
pectively. The first drop points where the embryonic dislocation occurs are at 5.5 Å and 5.7 Å in the cases of QC and MD, respectively.



Fig. 11. A defect is produced in nanoindentation simulation; (a) The configuration of embryonic dislocation from the MD simulation, (b) The configuration
of embryonic dislocation from the QC simulation and (c) The slip system of the fcc {111} surface.

Fig. 12. Load–displacement curves for the nanoindentation simulation for varying heights of a void center.
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where the Ri and Ri+6 together stand for the six pairs. The parameter therefore vanishes for each atom that rests at the site of
perfect fcc lattice structure. If there exists a defect such as vacancy and dislocation, the parameter for an atom in the vicinity



Fig. 13. Snapshots of nanoindentation simulation in terms of the centrosymmetry parameter for the case of no void.

Fig. 14. Snapshots of nanoindentation simulation in terms of the centrosymmetry parameter for the case of a void center at 0.6 � height.
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Fig. 15. Snapshots of nanoindentation simulation in terms of the centrosymmetry parameter for the case of a void center at 0.7 � height.

Fig. 16. Snapshots of nanoindentation simulation in terms of the centrosymmetry parameter for the case of a void center at 0.8 � height.
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Fig. 17. Shear strain e13 plots from the nanoindentation simulation for the case of no void.
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of the defect has some finite magnitude. When its magnitude is less than a cutoff value, we eliminated the corresponding
atom from visualizing our simulation results. Therefore, only defect-related atoms are visible. Thinner color tone indicates
a relatively larger value of the centrosymmetry parameter, which implies more distortion of the lattice.

Apart from the 0.8 � height case, the embryonic dislocation in Fig. 13(c) emerges upon the first drop of the load–displace-
ment curve, and the tetrahedral lock in Fig. 13(d) occurs at the second drop point (see Fig. 12). However, when the void is
located at 0.8 � height from the bottom, the defects and the voids meet with each other, and a distinct second load drop does
Fig. 18. Shear strain e13 plots from the nanoindentation simulation for the case of a void center at 0.6 � height.
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not appear (see Fig. 12). Atomic level strain (e13) is calculated for the four cases; no void, 0.6 � height, 0.7 � height and
0.8 � height (see Figs. 17–20). After the first drop, high strains occur along with the slip planes for every case. In the case
of no void, the embryo is generated, accompanying only a little amount of strain. In contrast, in the case of 0.6 � height
and 0.7 � height, relatively high strain field is created on the atoms located between the contact area of the indenter and
the void. Finally, for the case of 0.8 � height, high local strain field starts to build up around the top of the void in the early
stage of indentation.
Fig. 19. Shear strain e13 plots from the nanoindentation simulation for the case of a void center at 0.7 � height.

Fig. 20. Shear strain e13 plots from the nanoindentation simulation for the case of a void at 0.8 � height.



Fig. 21. Load–displacement curves from the nanoindentation simulation for varying heights of a void center from 0.70 � height to 0.80 � height.

Fig. 22. Load–displacement curves from the nanoindentation simulation for various radii of the void.
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To look into the detailed behavior according to the void heights, the increment of the void height is further reduced be-
tween the two cases of the 0.7 � height and 0.8 � height. As shown in Fig. 21, when the position of the void exceeds the
0.7 � height case, the tip force and the first drop point tend to decrease and the maximum tip force is found to be between
the height of 0.69 and 0.70.

Next, the load–displacement curves are compared for various radii of the void from 10 Å to 30 Å while fixing the location
of the void to be 0.6 � height. As shown in Fig. 22, the tip force continues to increase and the first drop is delayed for increas-
ing radii R = 10 Å, 15 Å, 20 Å, 25 Å and 30 Å. Note that the maximum tip force is produced for the case of R = 20 Å. This means
that for a fixed location of the void center there is a definite size of the radius that leads to the maximum load sustained by
the body before the first load drop takes place in the nanoindentation.

5. Conclusion

In the present work, we propose a new simple QC method using the variable-node elements. The advantage of the pro-
posed QC may summarized as
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(i) No adaptive meshing code for the constrained Delaunay triangulation is needed, but only the coding of the explicit
shape function is needed. Therefore, the coding of this QC method is straightforward.

(ii) In the course of adaptive refinement, the aspect ratios of the refined elements are maintained almost uniform, in con-
trast with the occurrence of large aspect ratios for the tetrahedral elements used in the conventional QC.

(iii) The proposed QC shows more rapid convergent behavior than the conventional QC, as verified by the fact that only 1/3
of the iterations needed for the conventional QC is required for the present QC to maintain the same accuracy in the
nanoindentation problem chosen.

(iv) The total computing time is drastically reduced in the present QC method than in the conventional QC method, as ver-
ified by the example of the nanoindentation problem chosen.

Some numerical examples on the nanoindentation have been presented to demonstrate the effectiveness of the proposed
QC method. In passing, we state that QC simulations on systems containing a larger number of atoms are under investigation
to explore the effects of the internal defects, like voids or impurities, on material properties through nanoindentation. In
addition, lattice systems other than FCC will be treated in this study. This will be reported in the subsequent paper in the
future.
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Appendix A. EAM potential parameters

The EAM is widely employed to describe system crystalline metals. The potential energy of metal atoms is described by
the pair potential of the two-body interaction and the embedded energy caused by the electron sea or gas around the atom.
Etotal ¼
X

i

FiðqiÞ þ
X
i>j

uðrijÞ ðA:1Þ

qi ¼
X
jðj–iÞ

f ðrjiÞ ðA:2Þ
Here, u, rij, and Fi are the pair potential, the distance between atom i and atom j, and the embedded energy defined by the
electron density qi, respectively. The electron density of atom i is obtained by the summation of the electron density f(rij)
over every individual atom j. The EAM potential was initially proposed by Daw and Baskes [33]. In the present work, the pair
potential and the embedded energy proposed by Cai and Ye [34] have been chosen. This is described as shown below.
FiðqiÞ ¼ �F0 1� ln
qi

qe

� �n� �
qi

qe

� �n

þ F1
qi

qe

� �
ðA:3Þ

ðf ðrijÞ ¼ fe exp �vðrij � reÞ
	 


ðA:4Þ
uðrijÞ ¼ �a 1þ bðrij=ra � 1Þ

	 

exp �bðrij=ra � 1Þ

	 

ðA:5Þ
Cai employed a cutoff radius of 1.65 � a0 to correct every variable [34]. Here, a0 is the lattice constant. For aluminum, the
lattice constant is 4.05 Å; the parameters are described as follows.
F0 ¼ 2:61 eV; qe ¼ 12:449; n ¼ 0:5; F1 ¼ �0:1392 eV; b ¼ 7:5995; f e ¼ 1:0; re ¼ 2:8638; v ¼ 2:5 Å;

ra ¼ 3:0169 Å; a ¼ 0:0834 eV
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